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The dynamics of vapor  bubble des t ruct ion and its re la t ion  to the intensity of heat exchange at 
the v a p o r - l i q u i d  in terface  a re  invest igated.  

Direct  contact of the vapor  with liquid, supercooled re la t ive  to the sa tura t ion  t e m p e r a t u r e ,  takes place 
in a number  of technological  p r o c e s s e s  of different  b ranches  of the industry [1-3]. The above-ment ioned 
type of heat exchange acqui res  specia l  in teres t  in the case  of sur face  boiling of the liquid [4-6] and in new 
s y s t e m s  of disti l l ing instal lat ions [7, 8]. 

The intensity of heat exchange in conditions of bubbling of a vapor  bubble through a l aye r  of unde r -  
heated liquid can be de te rmined  f r o m  the ra te  of the dec rea se  of its dimensions [9] 

p"r dR (i) 
AT d~ 

An accura te  solution of the p rob lem of the r a t e  of movement  of the boundary of a condensing bubble 
in an underheated liquid is a s soc ia ted  with cons iderable  diff icult ies.  The p rob lem is eons iderably  c o m -  
pl icated in the case  of movement  of a condensing bubble re la t ive  to the liquid. An approx imate  solution of 
the p rob l em for  a s ta t ionary  bubble can be obtained by assigning a ce r ta in  law of dis tr ibut ion of t e m p e r a -  
tu res  of the liquid surrounding the bubble.  In any case  the condition 

~, aT(O, ~) ,, dR - -p  r (2) 
Ox d~ 

must  be observed  on the instantaneous v a p o r - l i q u i d  boundary (x = 0). 

A more  s imple  t e m p e r a t u r e  dis tr ibut ion in the liquid can be obtained if the cu rva tu re  of the sur face  
of the demarca t ion  of the phases  is neglected,  and if it is a s sumed  that the vapor  bubble maintains  a con-  
stant  t e m p e r a t u r e  T s on this sur face  during condensation.  Hence it is a s sumed  that the t e m p e r a t u r e  jump 
on the phase boundary is negligibly smal l  which is found to be in accordance  with exper imenta l  r e su l t s  for  
pure  vapors  of nonmetal l ic  liquids [10, 11] and this is a s sumed  on the bas i s  of the theory  of f i lm condensa-  
tion. For  these conditions the t e m p e r a t u r e  field in the liquid surrounding the bubbles is exp re s sed  by an 
equation [12] 

T = T~- -  AT erf ( ~ ) (3) 

F r o m  (3) it follows that 
0T(0, ~ )  AT (4) 

The combined solution of equations (2) and (4) gives 

~'AT dx 
dR (5) 

Integrat ing (5) taking into account R (0) = R 0 and changing over  to d imensionless  magni tudes,  we will obtain 
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Fig.  l .  Dest ruct ion of the vapor  bubble (/3 = R/R0): 1) Ja  = 10; 2) 
20; 3) 40; 4) 60; 5) 80; b roken  curves  according to equation (6), 
continuous curves  accord ing  to (8), 

1 -- 0 = 2-ja]/~0-. (6) 

Equation (6) corresponds to conditions of symmetrical condensation of a stationary bubble and is a particular 
solution of a more general problem [13] for a case of destruction of a vapor bubble under the influence of 

heat exchange, which takes place when 
a I ~ 

Bn___ j a 2 _ _ ]  / 9__.< 0.05. 
Ro I / AP " 

Exper imen t s  [13] c a r r i e d  out in specif ic  conditions of weight lessness  (stat ionary bubble), gave a s a t i s -  
f ac to ry  ag reemen t  with the solution (6). 

The case  of condensat ion of a vapor  bubble moving re la t ive  to the liquid is of cons iderably  g r ea t e r  
p rac t i ca l  in te res t .  This  phenomenon was invest igated by us on an exper imenta l  appara tus  in which bubbling 
of the vapor  enter ing through a single ape r tu r e  into the l ayer  of underheated liquid was achieved.  A detai led 
descr ip t ion  of the appara tus  is given in [14]. 

The use  of high speed photography (700-2500 f r a m e s  pe r  second) enabled the fo rmat ion  and dynamic 
des t ruc t ion  of vapor  bubbles to be detected.  Analysis  of the photographs showed that initially a growth of 
the bubble takes place  d i rec t ly  on the nozzle ape r tu re .  As the volume inc reases  the bubble is displaced up-  
wards  f r o m  the nozzle.  Hence a vapor  column is fo rmed  by means of which the bubble is connected with the 
ape r tu re  of the nozzle .  When a ce r t a in  volume has been reached,  then the bubble is torn away f r o m  thevapor  
column and f loats  upwards .  While it moves  it d e c r e a s e s  in volume and it rapidly d i sappears  comple te ly .  
The remain ing  pa r t  of the vapor  phase  on the ape r tu re  of the nozzle s e r v e s  as a nucleus for  the new bubble.  
T r e a t m e n t  of the c i nem a t og ram s  of the p r o c e s s  was ca r r i ed  out by means of the photograph decoder  EDI-452. 
The r eco rded  configurat ions of the bubbles ,  magnified three t imes ,  were  examined as pro jec t ions  of the 
c r o s s  sect ions of bodies  of rotat ion.  The volume of the bubble was de te rmined  by integrat ion using the 
Simpson fo rmula .  The radius  of the equidimensional  sphere  was calculated according to the found value.  
The t ime m a r k e r  of the cine c a m e r a  enabled the var ia t ion  R to be t raced  with r e spec t  to t ime.  The f i r s t  
s e r i e s  of exper iments  was c a r r i e d  out with a nozzle d i ame te r  of 3 ram~ The exper imen t s  showed that the 
breaking  radius  of the bubble depends on the underheat ing of the liquid AT. As a resu l t  of t r ea tment  of the 
exper imenta l  data by a method of leas t  squares  the equation 

Ro -- 29.5.10-aAT -~ (7) 

was obtained. The range  of va r ia t ions  of values  R 0 and AT in the exper iments  were :  R 0 = (5.0-12.5) �9 103 m; 
AT = 4-25~ The sca t t e r  of the exper imenta l  points re la t ive  to equation (7) is :~10%. 
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It follows f r o m  Eq. (7) that with inc rease  in the underheat ing of the liquid the breaking  radius  of the 
bubble d e c r e a s e s .  S imi lar  r e su l t s  we re  observed  in the exper iments  of [15, 16] on invest igat ing sur face  
boiling. 

Measurement  of the dimensions  of vapor  bubbles af ter  they have broken  away f r o m  the nozzle and 
when they a r e  floating upwards  in the l ayer  of liquid in the case  of B n -< 0.05 was c a r r i e d  out according  to 
the method given above.  The resu l t  of the s e r i e s  of exper iments  (Ja = 40-75) is descr ibed  by the equation 

1 - -  [~ = cFo = 1.694. 104Fo. (8) 

Hence the s ca t t e r  of exper imenta l  points in re la t ion  to equation (8) was :~30%. 

The exper imenta l  data a re  compared  with equation (6) in Fig.  1. 

As can be seen  f r o m  Fig.  1, the des t ruc t ion  of the bubbles in the exper imen t s  took place  more  inten- 
s ively  than according to Eq. (6), without taking into account the influence of the fo rward  movement  of the 
bubble in the heat  exchange p r o c e s s .  

Intensif icat ion of des t ruc t ion  of the bubble under  the influence of its fo rward  movement  is shown theo-  
re t i ca l ly  in [17]. 

According to the data of [17], with inc rease  in the Pecle t  number  the r a t e  of des t ruc t ion  of the bubble 
i n c r e a s e s .  Unfortunately,  the resu l t  obtained in [17] by means of numer ica l  integrat ion of a s y s t e m  of dif-  
fe ren t ia l  equations,  co r responds  to two values of the Jacob  number  (Ja = 1, J a  = 10) and for  compara t ive ly  
smal l  values  of the Pecle t  number  (Pc = 4500). 

In our exper iments  cons iderably  g r e a t e r  values  of the Ja  and Pe numbers  were  observed ,  which did not 
make it poss ib le  to compare  the data of the exper imen t s  with the theoret ica l  conclusions [17]. 

The re la t ionship (8) obtained on the bas i s  of the exper iment  can be used to evaluate the coefficient  of 
heat  exchange in the case  of condensation of a vapor  bubble according to Eq. (1)o It follows f r o m  Eqs.  (1) 

and (8) 
)~' 

a---- 1.694.104 JaR---~" (9) 

The values ce, calculated according to Eq. (9), correspond with the results of a number of investigations 
of drop condensation of water vapor [18]. 

Equation (9) gives an instantaneous value of (x, related to the continuously varying surface of the phase 
contact. 

Together with this the heat exchange coefficient ~0, averaged over the "life time ~ Tt, related to the 
initial surface of the bubble (where R = R0): 

~t vt 

4~R~d~ = - -  I~ dT, (10) 
a o -  4r~RgT t ~) "c to d 

taking into account Eq. (8) we obtain 

-- ( c2 Fo 2 ~ (11) ~Zo=a 1 - - c F ~  t ] '  

By determining the final value of the Four i e r  number  according to the Eq. (8) f r o m  the condition fi = 0, 

we will finally obtain 

- i (12) r o = ~ = 0,565.104. ~'~' 
3 JaRo 

Ja = P'c'AT/pnr 
FO = a'r/R2o 
Pe = 2uR0/a'  
p', p" 

av 

N O T A T I O N  

is the Jacob  number;  
is the Four i e r  number;  
is the Pec le t  number;  
a r e  the densi ty of liquid and vapor;  
is the specif ic  heat  of the liquid; 
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r 

R0, R 
T s 
Tf 
AT = T s - T f ;  
T 

av  

k, 
U 

AP = P(Ts)  -P{Tf) ;  
3 = R/R0 

is the heat  of vaporizat ion;  
a r e  the b reak ing  and flow radius  of the bubble; 
is the sa tura t ion  t empera tu re ;  
is the t e m p e r a t u r e  of liquid at a dis tance f r o m  bubble; 

is the 
is the 
is the 
is the 

t ime;  
t he rm a l  diffusivity of the liquid; 
t he rma l  conductivity of the liquid; 
ve loc i ty  of bubble r i se ;  

is the re la t ive  flow radius  of the bubble.  
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